
Using template_product to Build and Distribute UPS Products 19-1

Chapter 19: Using template_product to Build

and Distribute UPS Products

In this chapter we describe the template_product product, and show how to
use it to build and distribute a product.

19.1 Overview

To simplify and somewhat automate the process of building UPS products, we
have designed the product template_product. Once this product is installed
on your system, it can be cloned into a new product area and “turned into” the
new product. template_product can be used to build products of all types
(shell script, pre-built binary, source code).

The following is a summary of the steps involved when using
template_product to build a UPS-compatible product. Each step is described
in detail later in this chapter:

1) Make sure template_product is installed on your system; install it if
necessary

2) Setup template_product

3) Create a directory for your product

4) Clone template_product to create a template for your product in the
new directory

5) Insert the product into the template

6) Setup and test the product

7) Distribute the product (using the Makefile provided with
template_product)

Also discussed in this chapter are:

• customizing a tar file

• adding a product to a CVS repository

• removing a product from a distribution node using the provided Makefile

19-2 Using template_product to Build and Distribute UPS Products

19.2 Accessing template_product

The template_product product may already be installed on your system. If
not, download it from the distribution node and install it into the main products
area on your system by using the usual installation commands:

% setup upd

% upd install template_product

19.3 Cloning template_product

Next you need to setup template_product, make a directory to hold your new
product, and clone template_product into this new area using a script that
comes with it called CloneTemplate. You need to provide the name and
version of your product to this script (we use newprod v1_0 in this example).
Enter this sequence of commands:

% setup template_product

% mkdir /tmp/newprod

% cd /tmp/newprod

% CloneTemplate

Product name? newprod

Product version? 1.0

Platform specific product [yN]? y

Dependant products [list as fred:joe:harry]?

installing template product files in /tmp/newprod

/newprod

/tmp/newprod/.

/tmp/newprod/.header

/tmp/newprod/.manifest.template_product

/tmp/newprod/ups

/tmp/newprod/ups/Version

/tmp/newprod/ups/INSTALL_NOTE.template

/tmp/newprod/ups/template_product.table

/tmp/newprod/ups/.manifest.template_product

/tmp/newprod/Makefile

/tmp/newprod/test

/tmp/newprod/test/TestScript

/tmp/newprod/README.template

42 blocks

Customizing product as newprod...

Using template_product to Build and Distribute UPS Products 19-3

16955

for Flavored products

?

 for NULL products

 for NULL products

QUALS is added qualifiers, like: "QUALS=mips3:debug"

#

 UPS_SUBDIR=ups

19-4 Using template_product to Build and Distribute UPS Products

for Flavored products

 FLAVOR=$(DEFAULT_FLAVOR)

 QUALS=""

for NULL products

FLAVOR=$(DEFAULT_NULL_FLAVOR)

QUALS=""

##--

Files to include in Distribution

16957

The files listed in the command output have now been copied into the new
product directory, and Makefile and
ups/template_product.table have been customized/renamed for the
product. Note that the output shows the full pathname to the created files even
though you are working from within this new product directory.

19.4 The Top-Level Makefile

The cloning of template_product creates a Makefile in the new product’s root
directory, e.g., /tmp/newprod/Makefile. In order for this Makefile to
know what it needs to about the new product, you generally need to make a
few changes to the top page or so, e.g., change the flavor, add build
instructions, and so on. Changes of this type are discussed in section 19.6.3
Add Build Instructions to Top-Level Makefile. You can also add commands to
other targets.

The first part of the file is reproduced here for reference (comments not
shown):

 SHELL=/bin/sh

 DIR=$(DEFAULT_DIR)

 PROD=newprod

 PRODUCT_DIR=MYPROD_DIR

 VERS=v1_0

 TABLE_FILE_DIR=ups

 TABLE_FILE=newprod.table

 CHAIN=development

 UPS_SUBDIR=ups

 ADDPRODUCT_HOST=fnkits.fnal.gov

DISTRIBUTIONFILE=$(DEFAULT_DISTRIBFILE)

 FLAVOR=$(DEFAULT_FLAVOR)

 OS=GENERIC_UNIX

 QUALS=

 CUST=none

...

Using template_product to Build and Distribute UPS Products 19-5

#---

all: proddir_is_set build_prefix

clean:

 rm -f $(PREFIX)

spotless:

test: proddir_is_set clean FORCE

 sh test/TestScript

...

19.5 Inserting your Product into the Template

Now you need to add your actual program into the template_product clone,
and run build instructions, if any. For shell scripts and pre-built binaries, all
you need to do is create a bin directory under the product root, and put the
executable in it. For source code, you need to first create a src directory
under the product root, put the source file in it, and then build the product as
described in the next section, 19.6 Building the Product.

19.6 Building the Product

19.6.1 Add Build Instructions

We recommend that you create a Makefile (separate from the one provided) to
ensure reproducibility of the build procedure. Create or copy the Makefile in
the src directory, and include a build target, e.g., install, as shown
(again, we use echo to create the file since it’s very simple for this example):

% echo "install:; cp hello ../bin" > Makefile

19.6.2 Run the Initial Build

Now create the bin directory under the product root, and run make to
complete the build:

% mkdir ../bin

% make hello install

19-6 Using template_product to Build and Distribute UPS Products

cc -o hello hello.c

cp hello ../bin

19.6.3 Add Build Instructions to Top-Level Makefile

Now it’s time to customize the top-level Makefile created by
CloneTemplate (refer to section 19.4 The Top-Level Makefile for a partial
file listing). Typical macro definitions that need to be changed for a compiled
program are:

 FLAVOR=$(DEFAULT_FLAVOR)

 OS=$(DEFAULT_OS)

 QUALS=

 CUST=$(DEFAULT_CUST)

Next, add the build instructions under the all target. For this example, they
are the two commands that were just run (mkdir and make).

all: proddir_is_set build_prefix

 -mkdir bin

 cd src; make hello install

19.6.4 Rebuild Instructions

The next time this product requires a build, you would just run the command:

% make [all]

from the product root directory.

19.7 Testing your Product

Now you can setup and test your product. As an example, for our product we
might run:

% setup newprod v1_0 -r $cwd -M ups -m newprod.table

or, for Bourne shell,

$ setup newprod v1_0 -r ‘pwd‘ -M ups -m newprod.table

followed by:

% hello

hello world

% unsetup newprod v1_0

% hello

Using template_product to Build and Distribute UPS Products 19-7

sh: hello: command not found

After testing, edit the test/TestScript file so that it tests your software.
In many cases, writing a good test script can be rather challenging. Include at
least a basic test to ensure that the product works properly. For our example,
the test script just needs to run our hello program and verify its output, e.g.,:

#!/bin/sh

hello | grep "hello world" > /dev/null

This will exit with a successful exit code if hello prints hello world, and
fail otherwise.

19.8 Customizing your Tar File

Products generally get distributed as tar files. The template_product
top-level Makefile can be used to make a product tar file and add it to the
distribution node in one step. There are several variables in the Makefile that
control what template_product includes in the tar file it makes of a product:

ADDDIRS="<dir1> <dir2> <dir3>..."

lists directories whose non-CVS-bookkeeping-files
should be added. The default is for this to be set to “.”,
the current directory, and the other variables left blank.
If you only wanted to include the bin and lib
directories of your product build area, you would
specify ADDIRS=bin lib.

ADDFILES= "<’find’ command options>"

lists file wildcards to include or exclude with
find(1) options. E.g., to exclude files ending in tilde
(i.e., emacs backup files), specify ADDFILES= !
-name ’*~’.

ADDEMPTY="<dir1> <dir2> <dir3>..."

lists empty directories to include in the product tar file.
By default the tar command does not include empty
directories in a tar file. Listing empty directories here
causes them to be added.

ADDCMD="<command>"

19-8 Using template_product to Build and Distribute UPS Products

specifies a command that generates a list of files on
standard output. These files will then be included in the
tar file. This could be used, for example, to use an
explicit file inclusion list like ADDCMD="cat
my_file_list".

Or it could be used to specify a find command with
filtering, sorting, and so on, e.g.,

ADDCMD= "find . ! -name ’*.o’ | egrep
-v \ ’/foo/|/bar/’ | sort -u"

These values are all combined by running the following sequence of
commands in the Makefile:

 (

 for d in .manifest.$(PROD) $(ADDEMPTY); do echo $d; done

 test -z "$(ADDDIRS)" || find $(ADDDIRS) $(PRUNECVS) !
-type d -print

 test -z "$(ADDFILES)" || find . $(PRUNECVS) $(ADDFILES) !
-type d -print

 test -z "$(ADDCMD)" || sh -c "$(ADDCMD)"

)

(where PRUNECVS holds find options to prevent find from going into
CVS directories). This generates a long list of files that get added to the tar
file.

19.9 Adding your Product to a Distribution
Node

The Makefile for template_product is set up to allow distribution to fnkits by
default:

• The macro ADDPRODUCT_HOST, which indicates the distribution node
to which products get added, is set to the default value
fnkits.fnal.gov.

• Under the section called Standard Product Distribution/Declaration
Targets the target kits is configured to add a product to fnkits and
declare it to the KITS database.

To add a product to a different distribution node (e.g., distnode.fnal.gov):

• change the value of the macro ADDPRODUCT_HOST to
distnode.fnal.gov

• add the target distnode: addproduct to the distribution section

• and run the make command with the new target, e.g., make
distnode

Using template_product to Build and Distribute UPS Products 19-9

19.9.1 Add Product to fnkits

Keeping the defaults in place, simply change to the directory of your product
and run make kits:

% cd /tmp/newprod

% make kits

rm -f /tmp/build-newprod-v1_0

creating .manifest...

creating /tmp/newprod/../newprodSunOS+5v1_0.tar...

/tmp/newprod/../newprodSunOS+5v1_0.tar:

-rw-rw-r-- mengel/oss 0 Apr 1 11:19 1998 .header

-rw-rw-r-- mengel/oss 381 Apr 1 11:18 1998 .manifest

-rwxrwxr-x mengel/oss 5 Apr 1 11:07 1998
./ups/Version

-rwxr-xr-x mengel/oss 55 Apr 1 11:07 1998
./ups/INSTALL_NOTE

-rwxr-xr-x mengel/oss 43 Apr 1 11:07 1998
./ups/setup.csh

-rwxr-xr-x mengel/oss 49 Apr 1 11:07 1998
./ups/setup.sh

-rwxr-xr-x mengel/oss 43 Apr 1 11:07 1998
./ups/unsetup.csh

-rwxr-xr-x mengel/oss 49 Apr 1 11:07 1998
./ups/unsetup.sh

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998
./ups/current

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998
./ups/uncurrent

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998
./ups/configure

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998
./ups/unconfigure

-rwxr-xr-x mengel/oss 462 Apr 1 11:07 1998
./ups/action.table

-rw-r--r-- mengel/oss 19858 Apr 1 11:14 1998 ./Makefile

-rw-r--r-- mengel/oss 190 Mar 30 17:21 1998 ./README

-rwxr-xr-x mengel/oss 87 Feb 5 16:32 1998
./test/TestScript

-rw-rw-r-- mengel/oss 36 Apr 1 11:08 1998
./src/hello.c

-rw-rw-r-- mengel/oss 26 Apr 1 11:09 1998
./src/Makefile

-rwxrwxr-x mengel/oss 5380 Apr 1 11:09 1998 ./src/hello

-rwxrwxr-x mengel/oss 5380 Apr 1 11:09 1998 ./bin/hello

upd addproduct -h fnkits -T
"/tmp/newprod/../newprodSunOS+5v1_0.tar" \

19-10 Using template_product to Build and Distribute UPS Products

 -M ups -m action.table -U ups -f SunOS+5

upderr::upderr_syslog - successful ups declare newprod v1_0
\

 -T ftp://fnkits/ftp/products/newprod/v1_0/SunOS+5.tar -f
SunOS+5 \

 -r /ftp/products/newprod/v1_0/SunOS+5 -z /ftp/upsdb -q "" \

 -M /ftp/upsdb/newprod -m v1_0.table

rm -f "/tmp/newprod/../newprodSunOS+5v1_0.tar"

After adding your product, use upd list to check that it arrived properly:

% upd list -a newprod

DATABASE=/ftp/upsdb

 Product=newprod Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain=""

19.9.2 Specify Multiple Flavors

To add different flavors of the same product without having to modify the
Makefile, you may find it convenient to specify the flavor on the make
command line, e.g.,

% make "FLAVOR=SunOS+5" kits

or, more generally,

% make "FLAVOR=${UPS_FLAVOR}" kits

19.10 Adding your Product Source to a CVS
Repository

At this point, your product is eligible for inclusion in one of Fermilab’s CVS
repositories. This allows tracking of the software revisions, and allows other
people to find it, get a particular version, and build it if they need to. The
eligibility standards are described in the document Using Fermilab CVS
Product Source Repositories, at
http://www.fnal.gov/docs/products/template_product/F
ermiRepository/FermiRepository.html.

First set up CVS appropriately for the repository you’re going to use (the
example shows fermilab), then import your product:

% cvs import newprod v1_0 fermilab

Using template_product to Build and Distribute UPS Products 19-11

19.11 Removing your Product from a Distri-
bution Node

A special target is provided in the top-level Makefile to remove a product from
KITS, namely:

unkits: delproduct

To remove your product from the KITS database on the fnkits node, just run
the command:

% make unkits

upd delproduct -h fnkits -f SunOS+5 newprod v1_0

upderr::upderr_syslog - successful ups undeclare newprod
v1_0 -f SunOS+5

If your product is on a distribution node other than fnkits, the Makefile has
probably already been edited to recognize that node (see section 19.9 Adding
your Product to a Distribution Node). Add a target analogous to the unkits
target. For example if you have:

distnode: addproduct

then add the target:
undistnode: delproduct

To remove the product, run the command:

% make undistnode

19-12 Using template_product to Build and Distribute UPS Products

